Lunch & Learn Sessions

Presented by Functional Safety Engineering Services
Introduction
Our Story
Our Story

Functional Safety Engineering Services Ltd. (FSES) was established in response to the much needed conformance to the international standards IEC 61508 for Electrical/Electronic and Programmable Electronic Safety Related Systems and its derivatives IEC 61511, IEC 61513, IEC 61505 etc.

Our mission has always been to be the number one global functional safety consultancy, delivering services to various industries where compliance is required.

We have come a long way since our establishment, delivering large Quantitative Risk Assessments in Saudi Arabia, Process Hazard Assessment workshops in various countries in the Middle East and technical consultancy services globally.

With experience gained working with (and as) end users, Engineering Procurement and Construction (EPC) companies and system integrators. FSCL has the underpinning knowledge of Functional Safety standards and has gained significant experience in its application; subsequently we are competent in providing practical solutions that emphasis the application of appropriate level of rigour.

Our solutions and services are tried and tested, implemented by major operators in the process industry and accepted by regulating bodies including the Health and Safety Executive (HSE).
The Safe Way Is the Best Way
Who We Are
Who are We & Why Us?

Functional Safety Engineering Services are an engineering consultancy company built on experience and expertise in the field of functional safety.

Our consultants are able to support clients in the functional safety aspects of the processes, systems and equipment for the oil and gas, petrochemical, utilities (including green technologies), military and manufacturing industries.

- TÜV Functional Safety Engineers
- Quality focused through ISO 9001 Management Systems
- Functional Safety Management Experts
- Globally Established Consultants
Meet our Team

Peter Hall
Managing Director

Martin Snow
Commercial Director

Amir Akhlaghi
Engineering Director

Mohammed Bhaimia
Senior Consultant
Lunch and Learn Topics
What can we offer
This introduction provides an overview of the International Standards for provision of Functional Safety Services IEC 61508 (the mother standard) and thus its process industry derivate IEC 61511. The challenges faced in following the frame work are considered and presented. The concept of Safety Life Cycle and the requirements for Management of Functional Safety, minimisation of Random Hardware Failures and minimal Architectural requirements for Safety Systems are covered. Key points:

- What is Functional Safety
- Safety Life Cycle
- E/E/PE Safety Related Systems
- Risk Assessment Based approach provision of safe guards and protection layers.
- What is SIS, What are SIFs
This session concentrated on the 3 main types of Risk Assessment:

- Qualitative Risk Assessment
- Semi-Quantitative Risk Assessment
- Quantitative Risk Assessment

How does one go about selecting the appropriate Risk Assessment tool for the project in hand. How is the current phase of the project (i.e. concept, Pre FEED, FEED or Detailed Design) effect the selection of the assessment type. The session also provides details of where these types of risk assessments are called upon to address specific phases of the IEC 61511 Safety Life Cycle.
This session looks how an appropriate QRA life cycle maybe complied for a complex facility or complex process hazards. What are the required steps in fully quantifying risk in terms of Individual Risk Per Annum (IRPA) and Potential Loss of Life (PLL). How can a QRA life cycle be customised to meeting the financial requirements of project in terms of Life Cycle Cost Analysis.
Layer of Protection Analysis as a Semi Quantitative Risk Assessment Tool

Lunch and Lean Session 4

The use of LOPA methodology and techniques in order to address the requirements of IEC 61511 Phase 2, Allocation of Safety Functions To Protection Layers. Calculating intermediate event frequencies for individual scenarios or multiple scenarios. Tolerable risk criteria and selection of appropriate risk targets. LOPA rule set, what are enabling conditions, Conditional Modifiers, and Independent Protection Layers.

The common mistakes made in LOPA, commonality between imitating causes and credited safe guards or excessive use of conditional modifiers.
ALARP stands for "as low as reasonably practicable", and is a term often used in the milieu of safety-critical and safety-involved systems. The ALARP principle is that the residual risk shall be as low as reasonably practicable. Demonstration of ALARP and cost benefit analysis. Calculation of justified cost.

Do we need to do more, if so how? if not why?
Tools and techniques used for calculation of Probability of Failure On demand (PFD) and Failure Rate (PFH). Reference to IEC 61508 Part 6 and the simplified formula. The provenance of the simplified formula and its limitations.

Voting configurations and the effect of imperfect proof testing on SIFs.

<table>
<thead>
<tr>
<th>Safety Integrity Level</th>
<th>Probability of Failure on Demand</th>
<th>Risk Reduction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL 4</td>
<td>>= 10^{-5} to < 10^{-4}</td>
<td>100,000 to 10,000</td>
</tr>
<tr>
<td>SIL 3</td>
<td>>= 10^{-4} to < 10^{-3}</td>
<td>10,000 to 1,000</td>
</tr>
<tr>
<td>SIL 2</td>
<td>>= 10^{-3} to < 10^{-2}</td>
<td>1,000 to 100</td>
</tr>
<tr>
<td>SIL 1</td>
<td>>= 10^{-2} to < 10^{-1}</td>
<td>100 to 10</td>
</tr>
</tbody>
</table>
The long term effect of imperfect proof testing. Can imperfect proof testing be accounted for in SIL verification activities. What can and should be done to minimise Imperfect Proof Testing. What is the IEC 61508 and IEC 61511 views on imperfect proof testing for LOW Demand and HIGH Demand SIFs.
Get in touch
We want to hear from you
Get in Touch

Head Office
Passfield Business Centre
Lynchborough Road, Hampshire
GU30 7SB, UK

Global Offices
Asia, Europe and Middle East

Our Phone
+44 1428 333 333

Email / Website
info@fses.global
www.fses.global